Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Chem Biodivers ; 20(4): e202300267, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2287556

ABSTRACT

In the present study, a new polyoxygenated cembranoid named sarcomililatol H (1) as well as six known terpenes 2-7 with different skeletons were isolated from South China Sea soft coral Sarcophyton mililatensis. Based on the comprehensive analyses of 1D and 2D NMR spectroscopic data, the structure of the new compound 1 was established. This new cembranoid was characterized by the presence of the rarely encountered tetrahydropyran ring with the ether linkage across C-2 and C-12. By applying the time-dependent density functional theory electronic circular dichroism (TDDFT ECD) approach, the absolute configuration of sarcomililatol H (1) was determined. All of the isolates were subjected to the anti-inflammatory and anti-tumor bioassays. However, none of them was active in these evaluations. Additionally, the preliminary virtual screening of inhibitory against SARS-CoV-2 by molecular docking showed that diterpene 1 could be regarded as a SARS-CoV-2 main protease (Mpro ) inhibitor (binding energy: -7.63 kcal/mol). The discovery of these terpenes has expanded the chemical diversity and complexity of terpenes from the species S. mililatensis.


Subject(s)
Anthozoa , COVID-19 , Diterpenes , Animals , Terpenes/chemistry , Anthozoa/chemistry , Molecular Docking Simulation , SARS-CoV-2 , Diterpenes/chemistry , Molecular Structure
2.
Biomed Pharmacother ; 161: 114481, 2023 May.
Article in English | MEDLINE | ID: covidwho-2254896

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to pose threats to public health. The clinical manifestations of lung pathology in COVID-19 patients include sustained inflammation and pulmonary fibrosis. The macrocyclic diterpenoid ovatodiolide (OVA) has been reported to have anti-inflammatory, anti-cancer, anti-allergic, and analgesic activities. Here, we investigated the pharmacological mechanism of OVA in suppressing SARS-CoV-2 infection and pulmonary fibrosis in vitro and in vivo. Our results revealed that OVA was an effective SARS-CoV-2 3CLpro inhibitor and showed remarkable inhibitory activity against SARS-CoV-2 infection. On the other hand, OVA ameliorated pulmonary fibrosis in bleomycin (BLM)-induced mice, reducing inflammatory cell infiltration and collagen deposition in the lung. OVA decreased the levels of pulmonary hydroxyproline and myeloperoxidase, as well as lung and serum TNF-ɑ, IL-1ß, IL-6, and TGF-ß in BLM-induced pulmonary fibrotic mice. Meanwhile, OVA reduced the migration and fibroblast-to-myofibroblast conversion of TGF-ß1-induced fibrotic human lung fibroblasts. Consistently, OVA downregulated TGF-ß/TßRs signaling. In computational analysis, OVA resembles the chemical structures of the kinase inhibitors TßRI and TßRII and was shown to interact with the key pharmacophores and putative ATP-binding domains of TßRI and TßRII, showing the potential of OVA as an inhibitor of TßRI and TßRII kinase. In conclusion, the dual function of OVA highlights its potential for not only fighting SARS-CoV-2 infection but also managing injury-induced pulmonary fibrosis.


Subject(s)
COVID-19 , Diterpenes , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , Lung , Diterpenes/adverse effects , Bleomycin/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Fibroblasts , Signal Transduction
3.
Sci Rep ; 13(1): 2534, 2023 02 13.
Article in English | MEDLINE | ID: covidwho-2245374

ABSTRACT

Andrographis paniculata, a medicinal plant in Thailand national list of essential medicines, has been proposed for treatment of patients with mild to moderate coronavirus disease 2019. This study aims to develop a highly selective and sensitive liquid chromatography triple quadrupole tandem mass spectrometry method for quantitative determination of major diterpenoids in plasma and urine with application in pharmacokinetics. Chromatographic separation was performed on C18 column using a gradient mobile phase of water and acetonitrile. Mass spectrometry was analyzed using multiple reaction monitoring with negative ionization mode. This validated analytical method was very sensitive, less time consuming in analysis, and allowed the reliability and reproducibility on its application. The clinical pharmacokinetics was evaluated after single oral administration of A. paniculata extract (calculated as 60 mg of andrographolide). The disposition kinetics demonstrated that major diterpenoids could enter into systemic circulation, but they are mostly biotransformed (phase II) into conjugated glucuronide and sulfate metabolites. These metabolites are predominantly found in plasma and then extremely eliminated, in part through urinary excretion. The successful application of this analytical method supports its suitable uses in further clinical benefits after oral administration of A. paniculata.


Subject(s)
Andrographis , COVID-19 , Diterpenes , Humans , Chromatography, Liquid/methods , Reproducibility of Results , Tandem Mass Spectrometry/methods , Diterpenes/chemistry , Administration, Oral , Metabolic Networks and Pathways , Chromatography, High Pressure Liquid/methods , Andrographis/chemistry
4.
Phytomedicine ; 112: 154708, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2232019

ABSTRACT

BACKGROUND: Andrographis paniculata (Burm. f.) Nees has demonstrated potential for treating infections caused by coronaviruses. However, no antiviral activity of andrographolide or A. paniculata extracts against human coronavirus organ culture 43 (HCoV-OC43) has been reported. PURPOSE: This study aimed to evaluate the anti-HCoV-OC43 effect of andrographolide and A. paniculata as well as the correlation between andrographolide concentration and the anti-HCoV-OC43 activity of A. paniculata extracts. METHODS: This study evaluated and compared the in vitro anti-HCoV-OC43 activities of various A. paniculata extracts and andrographolide. To obtain A. paniculata extracts with different concentrations of andrographolide and its components, methanol and deep eutectic solvents (DES) were used to extract the aerial parts of A. paniculata. Andrographolide content was determined using UV-HPLC, and antiviral activity was assessed in HCT-8 colon cells. RESULTS: The methanol and five acidic DES (containing malic acid or citric acid) extracts of A. paniculata exerted anti-HCoV-OC43 activity. Antiviral activity had a moderately strong positive linear relationship (r = 0.7938) with andrographolide content. Although the methanol extract contained the highest andrographolide content (2.34 mg/ml), its anti-HCoV-OC43 activity was lower than that of the DES extracts containing lower andrographolide concentrations (0.92-1.46 mg/ml). CONCLUSION: Methanol and the five acidic DES extracts of A. paniculata exhibited anti-HCoV-OC43 activity. However, the in vitro antiviral activity of A. paniculata extracts did not have a very strong positive linear relationship (r < 0.8) with andrographolide concentration in the extract. As a result, when comparing A. paniculata extracts, the anti-HCoV-OC43 test could provide a different result from the andrographolide concentration determination.


Subject(s)
Andrographis , Coronavirus , Diterpenes , Humans , Plant Extracts/pharmacology , Solvents , Andrographis paniculata , Deep Eutectic Solvents , Methanol , Organ Culture Techniques , Diterpenes/pharmacology
5.
Molecules ; 28(2)2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2216644

ABSTRACT

A number of phytochemicals have been identified as promising drug molecules against a variety of diseases using an in-silico approach. The current research uses this approach to identify the phyto-derived drugs from Andrographis paniculata (Burm. f.) Wall. ex Nees (AP) for the treatment of diphtheria. In the present study, 18 bioactive molecules from Andrographis paniculata (obtained from the PubChem database) were docked against the diphtheria toxin using the AutoDock vina tool. Visualization of the top four molecules with the best dockscore, namely bisandrographolide (-10.4), andrographiside (-9.5), isoandrographolide (-9.4), and neoandrographolide (-9.1), helps gain a better understanding of the molecular interactions. Further screening using molecular dynamics simulation studies led to the identification of bisandrographolide and andrographiside as hit compounds. Investigation of pharmacokinetic properties, mainly ADMET, along with Lipinski's rule and binding affinity considerations, narrowed down the search for a potent drug to bisandrographolide, which was the only molecule to be negative for AMES toxicity. Thus, further modification of this compound followed by in vitro and in vivo studies can be used to examine itseffectiveness against diphtheria.


Subject(s)
Andrographis , Corynebacterium diphtheriae , Diphtheria , Diterpenes , Andrographis paniculata , Andrographis/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Plant Extracts/pharmacology , Phytochemicals/pharmacology
6.
Chem Biodivers ; 20(2): e202200918, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2172733

ABSTRACT

In spite of tremendous efforts exerted in the management of COVID-19, the absence of specific treatments and the prevalence of delayed and long-term complications termed post-COVID syndrome still urged all concerned researchers to develop a potent inhibitor of SARS-Cov-2. The hydromethanolic extracts of different parts of E. mauritanica were in vitro screened for anti-SARS-Cov-2 activity. Then, using an integrated strategy of LC/MS/MS, molecular networking and NMR, the chemical profile of the active extract was determined. To determine the optimum target for these compounds, docking experiments of the active extract's identified compounds were conducted at several viral targets. The leaves extract showed the best inhibitory effect with IC50 8.231±0.04 µg/ml. The jatrophane diterpenes were provisionally annotated as the primary metabolites of the bioactive leaves extract based on multiplex of LC/MS/MS, molecular network, and NMR. In silico studies revealed the potentiality of the compounds in the most active extract to 3CLpro, where compound 20 showed the best binding affinity. Further attention should be paid to the isolation of various jatrophane diterpenes from Euphorbia and evaluating their effects on SARS-Cov-2 and its molecular targets.


Subject(s)
COVID-19 , Diterpenes , Euphorbia , Molecular Structure , Euphorbia/chemistry , Molecular Docking Simulation , Tandem Mass Spectrometry , SARS-CoV-2 , Diterpenes/chemistry , Plant Extracts/chemistry
7.
Gene ; 851: 146981, 2023 Jan 30.
Article in English | MEDLINE | ID: covidwho-2076125

ABSTRACT

Andrographolide and related compounds are effective against several viral diseases, including dengue, COVID-19, influenza, and chikungunya. Andrographis paniculata is the primary source for these compounds, but its availability is limited. A. alata is a potential alternative source, and neoandrographolide (NAG) is the major antiviral compound in this species. Since molecular studies in A. alata are scarce, we sequenced its leaf transcriptome to identify the full-length genes involved in neoandrographolide biosynthesis. We assembled 13.6 Gb RNA-Seq data and generated 81,361 transcripts with 1007 bp average length and 1,810 bp N50. The transcripts were categorized under biological processes (2,707), cellular components (678), and molecular functions (2,036). KEGG analysis mapped 975 transcripts to the secondary metabolite pathways. Among the 420 transcripts mapped to terpenoids and polyketides pathways, 142 transcripts were related to the biosynthesis of andrographolide and its derivatives. After a detailed analysis of these transcripts, we identified 32 full-length genes coding for all the 22 enzymes needed for andrographolide biosynthesis. Among them, 15 full-length genes were identified for the first time from Andrographis species. These full-length genes and the transcripts shall serve as an invaluable resource for the metabolic engineering of andrographolides and neoandrographolide in Andrographis and other species.


Subject(s)
Andrographis , COVID-19 , Diterpenes , Andrographis/genetics , Andrographis/metabolism , Antiviral Agents/metabolism , Diterpenes/metabolism , Gene Expression Profiling
8.
Molecules ; 27(19)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2066270

ABSTRACT

Andrographis paniculata is a well-known Asian medicinal plant with a major phytoconstituent of diterpene lactones, such as andrographolide, 14-deoxyandrographolide, and neoandrographolide. A World Health Organization (WHO) monograph on selected medicinal plants showed that A. paniculata extracts and its major diterpene lactones have promising anti-inflammatory, antidiabetic, antimalarial, anticancer, antifungal, antibacterial, antioxidant, and hypoglycemic activities. However, these active phytochemicals have poor water solubility and bioavailability when delivered in a conventional dosage form. These biological barriers can be mitigated if the extract or isolated compound are delivered as nanoparticles. This review discusses existing studies and marketed products of A. paniculata in solid, liquid, semi-solid, and gaseous dosage forms, either as an extract or isolated pure compounds, as well as their deficits in reaching maximum bioavailability. The pharmaceutics and pharmacological activity of A. paniculata as a nano-delivery system are also discussed.


Subject(s)
Andrographis , Antimalarials , Diterpenes , Plants, Medicinal , Andrographis/chemistry , Andrographis paniculata , Anti-Bacterial Agents , Anti-Inflammatory Agents/pharmacology , Antifungal Agents , Antioxidants , Diterpenes/chemistry , Hypoglycemic Agents , Lactones , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Water
9.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2043771

ABSTRACT

The emergence and rapid evolution of human pathogenic viruses, combined with the difficulties in developing effective vaccines, underline the need to develop innovative broad-spectrum antiviral therapeutic agents. The present study aims to determine the in silico antiviral potential of six bacterial antimicrobial peptides (AMPs), two phytochemicals (silvestrol, andrographolide), and two bacterial secondary metabolites (lyngbyabellin A, hapalindole H) against dengue virus, Zika virus, Ebola virus, the major variants of SARS-CoV-2 and monkeypox virus. The comparison of docking scores obtained with natural biomolecules was performed with specific neutralizing antibodies (positive controls for ClusPro) and antiviral drugs (negative controls for Autodock Vina). Glycocin F was the only natural biomolecule tested to show high binding energies to all viral surface proteins and the corresponding viral cell receptors. Lactococcin G and plantaricin ASM1 also achieved high docking scores with all viral surface proteins and most corresponding cell surface receptors. Silvestrol, andrographolide, hapalindole H, and lyngbyabellin A showed variable docking scores depending on the viral surface proteins and cell receptors tested. Three glycocin F mutants with amino acid modifications showed an increase in their docking energy to the spike proteins of SARS-CoV-2 B.1.617.2 Indian variant, and of the SARS-CoV-2 P.1 Japan/Brazil variant, and the dengue DENV envelope protein. All mutant AMPs indicated a frequent occurrence of valine and proline amino acid rotamers. AMPs and glycocin F in particular are the most promising biomolecules for the development of broad-spectrum antiviral treatments targeting the attachment and entry of viruses into their target cell.


Subject(s)
COVID-19 Drug Treatment , Dengue , Hemorrhagic Fever, Ebola , Zika Virus , Amino Acids , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzofurans , Dengue/drug therapy , Diterpenes , Hemorrhagic Fever, Ebola/drug therapy , Humans , Molecular Docking Simulation , Monkeypox virus/metabolism , Proline/therapeutic use , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Valine/therapeutic use , Zika Virus/genetics , Zika Virus/metabolism
10.
Molecules ; 27(14)2022 Jul 17.
Article in English | MEDLINE | ID: covidwho-1938912

ABSTRACT

Cytokine storm is a condition in which the immune system produces an excessive number of inflammatory signals, which can result in organ failure and death. It is also known as cytokine release syndrome, CRS, or simply cytokine storm, and it has received a lot of attention recently because of the COVID-19 pandemic. It appears to be one of the reasons why some people experience life-threatening symptoms from COVID-19, a medical condition induced by SARS-CoV-2 infection. In situations where natural substances can be exploited as therapeutics to reduce cytokine storm, the drug development process has come to the rescue. In the present study, we tested the potentiality of Andrographolide, labdane diterpenoid targeting several key cytokines that are secreted as a result of cytokine storm. We used molecular docking analyses, molecular dynamics simulations, and pharmacokinetic properties to test the stability of the complexes. The compound's binding energy with some cytokines was over -6.5 Kcal/mol. Furthermore, a post-molecular dynamics (MD) study revealed that Andrographolide was extremely stable with these cytokines. The compound's pharmacokinetic measurements demonstrated excellent properties in terms of adsorption, distribution, metabolism, and excretion. Our research revealed that this compound may be effective in lowering cytokine storm and treating severe symptoms.


Subject(s)
COVID-19 Drug Treatment , Diterpenes , Cytokine Release Syndrome/drug therapy , Cytokines , Diterpenes/pharmacology , Diterpenes/therapeutic use , Humans , Molecular Docking Simulation , Pandemics , SARS-CoV-2
11.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1785837

ABSTRACT

The chemical composition and antimicrobial activity of propolis from a semi-arid region of Morocco were investigated. Fifteen compounds, including triterpenoids (1, 2, 7-12), macrocyclic diterpenes of ingol type (3-6) and aromatic derivatives (13-15), were isolated by various chromatographic methods. Their structures were elucidated by a combination of spectroscopic and chiroptical methods. Compounds 1 and 3 are new natural compounds, and 2, 4-6, and 9-11 are newly isolated from propolis. Moreover, the full nuclear magnetic resonance (NMR) assignments of three of the known compounds (2, 4 and 5) were reported for the first time. Most of the compounds tested, especially the diterpenes 3, 4, and 6, exhibited very good activity against different strains of bacteria and fungi. Compound 3 showed the strongest activity with minimum inhibitory concentrations (MICs) in the range of 4-64 µg/mL. The combination of isolated triterpenoids and ingol diterpenes was found to be characteristic for Euphorbia spp., and Euphorbia officinarum subsp. echinus could be suggested as a probable and new plant source of propolis.


Subject(s)
Anti-Infective Agents , Diterpenes , Euphorbia , Propolis , Triterpenes , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Diterpenes/chemistry , Euphorbia/chemistry , Molecular Structure , Morocco , Propolis/pharmacology , Triterpenes/chemistry
12.
ChemMedChem ; 17(5): e202100732, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1661603

ABSTRACT

Naturally occurring compounds represent a vast pool of pharmacologically active entities. One of such compounds is andrographolide, which is endowed with many beneficial properties, including the activity against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). To initiate a drug repurposing or hit optimization campaign, it is imperative to unravel the primary mechanism(s) of the antiviral action of andrographolide. Here, we showed by means of a reporter gene assay that andrographolide exerts its anti-SARS-CoV-2 effects by inhibiting the interaction between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2-related factor 2 (NRF2) causing NRF2 upregulation. Moreover, we demonstrated that subtle structural modifications of andrographolide could lead to derivatives with stronger on-target activities and improved physicochemical properties. Our results indicate that further optimization of this structural class is warranted to develop novel COVID-19 therapies.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Diterpenes/chemistry , SARS-CoV-2/drug effects , Animals , COVID-19/virology , Cell Line , Chlorocebus aethiops , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Molecular Docking Simulation , Molecular Structure , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Replication , COVID-19 Drug Treatment
13.
BMJ Open ; 11(12): e054208, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1623564

ABSTRACT

INTRODUCTION: Most existing vaccines require higher or additional doses or adjuvants to provide similar protection for people living with HIV (PLWH) compared with HIV-uninfected individuals. Additional research is necessary to inform COVID-19 vaccine use in PLWH. METHODS AND ANALYSIS: This multicentred observational Canadian cohort study will enrol 400 PLWH aged >16 years from Montreal, Ottawa, Toronto and Vancouver. Subpopulations of PLWH of interest will include individuals: (1) >55 years of age; (2) with CD4 counts <350 cells/mm3; (3) with multimorbidity (>2 comorbidities) and (4) 'stable' or 'reference' PLWH (CD4 T cells >350 cells/mm3, suppressed viral load for >6 months and <1 comorbidity). Data for 1000 HIV-negative controls will be obtained via a parallel cohort study (Stop the Spread Ottawa), using similar time points and methods. Participants receiving >1 COVID-19 vaccine will attend five visits: prevaccination; 1 month following the first vaccine dose; and at 3, 6 and 12 months following the second vaccine dose. The primary end point will be the percentage of PLWH with COVID-19-specific antibodies at 6 months following the second vaccine dose. Humoral and cell-mediated immune responses, and the interplay between T cell phenotypes and inflammatory markers, will be described. Regression techniques will be used to compare COVID-19-specific immune responses to determine whether there are differences between the 'unstable' PLWH group (CD4 <350 cells/mm3), the stable PLWH cohort and the HIV-negative controls, adjusting for factors believed to be associated with immune response. Unadjusted analyses will reveal whether there are differences in driving factors associated with group membership. ETHICS AND DISSEMINATION: Research ethics boards at all participating institutions have granted ethics approval for this study. Written informed consent will be obtained from all study participants prior to enrolment. The findings will inform the design of future COVID-19 clinical trials, dosing strategies aimed to improve immune responses and guideline development for PLWH. TRIAL REGISTRATION NUMBER: NCT04894448.


Subject(s)
COVID-19 , HIV Infections , COVID-19 Vaccines , Canada , Cohort Studies , Diterpenes , Humans , Multicenter Studies as Topic , Observational Studies as Topic , SARS-CoV-2 , Vaccination
14.
Molecules ; 26(22)2021 Nov 21.
Article in English | MEDLINE | ID: covidwho-1524088

ABSTRACT

Plants consistently synthesize and accumulate medically valuable secondary metabolites which can be isolated and clinically tested under in vitro conditions. An advancement with such important phytochemical production has been recognized and utilized as herbal drugs. Bioactive andrographolide (AGL; C20H30O5) isolated from Andrographis paniculate (AP) (Kalmegh) is a diterpenoid lactones having multifunctional medicinal properties including anti-manic, anti-inflammatory, liver, and lung protective. AGL is known for its immunostimulant activity against a variety of microbial infections thereby, regulating classical and alternative macrophage activation, Ag-specific antibody production during immune disorder therapy. In vitro studies with AGL found it to be effective against multiple tumors, neuronal disorders, diabetes, pneumonia, fibrosis, and other diverse therapeutic misadventures. Generally, virus-based diseases like ZIKA, influenza A virus subtype (H1NI), Ebola (EBOV), Dengue (DENV), and coronavirus (COVID-19) epidemics have greatly increased scientific interest and demands to develop more effective and economical immunomodulating drugs with minimal side effects. Trials and in vitro pharmacological studies with AGL and medicinally beneficial herbs might contribute to benefit the human population without using chemical-based synthetic drugs. In this review, we have discussed the possible role of AGL as a promising herbal-chemo remedy during human diseases, viral infections and as an immunity booster.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Plants, Medicinal/chemistry , Plants, Medicinal/immunology , Virus Diseases/drug therapy , Antiviral Agents/chemical synthesis , Antiviral Agents/therapeutic use , Diterpenes/chemical synthesis , Diterpenes/therapeutic use , Health , Humans , Immune System/drug effects
15.
Phytother Res ; 35(10): 5365-5373, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1479284

ABSTRACT

Andrographis paniculata is home to a rich variety of molecules especially andrographolide and its derivatives. Clinical properties of the andrographolide are multifarious and include: analgesic, antipyretic, antiretroviral, antiproliferative, antimalarial, antithrombotic, antihyperglycemic, antiurolethial, antilesihmaniasis, hepatoprotective, immune-modulatory, protective against alcohol induced toxicity and cardioproetcive activity and anticancer activity. Andrographolide, neoandrographolide, dehydroandrographolide and several natural and synthetic derivatives of it: 14-deoxy-11,12-didehydroandrographolide and 14-deoxyandrographolide, dehydroandrographolide succinic acid monoester (DAMS), 14-ά-lipoyl andrographolide (AL-1), 14-acetyl-3,9-isopropyl-ideneandrographolide, 14-acetylandrographolide, 3,14,19-triacetylandrographolide, and 3,9-isopropyl-idene andrographolide, are shown to possess significant antiviral activity against HIV, influenza A, HBV, HCV, HPP and HSV. Studies on SARS CoV 2 is restricted to in silico molecular docking studies on viral targets and selected host target proteins. The main targets of andrographolide and its derivatives are fusion and adsorption of virus to the host cell, binding to viral receptor and co-receptor, enzymes involved in DNA/RNA/Genome replication by the virus, translation, post-translation and reverse transcription. Andrographolide as a drug is yet to reach its full therapeutic potential since this molecule shows low bioavailability. Andrographolide therapy is in need of an appropriate delivery system that may increase its bioavailability. Further high-quality studies are needed to firmly establish the clinical efficacy of the plant.


Subject(s)
Andrographis , Antiviral Agents , Diterpenes , Plant Extracts/pharmacology , Andrographis/chemistry , Antiviral Agents/pharmacology , Diterpenes/pharmacology , Molecular Docking Simulation , SARS-CoV-2/drug effects
16.
Front Cell Infect Microbiol ; 11: 680127, 2021.
Article in English | MEDLINE | ID: covidwho-1412623

ABSTRACT

Since the first reported case caused by the novel coronavirus SARS-CoV-2 infection in Wuhan, COVID-19 has caused serious deaths and an ongoing global pandemic, and it is still raging in more than 200 countries and regions around the world and many new variants have appeared in the process of continuous transmission. In the early stage of the epidemic prevention and control and clinical treatment, traditional Chinese medicine played a huge role in China. Here, we screened out six monomer compounds, including artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide, with excellent anti-SARS-CoV-2 and anti-GX_P2V activity from Anti-COVID-19 Traditional Chinese Medicine Compound Library containing 389 monomer compounds extracted from traditional Chinese medicine prescriptions "three formulas and three drugs". Our discovery preliminary proved the stage of action of those compounds against SARS-CoV-2 and provided inspiration for further research and clinical applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Artemether , Artemisinins , Artesunate , Chalcones , Diterpenes , Humans
17.
Mar Drugs ; 19(7)2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1314693

ABSTRACT

The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolites from the genus were screened using molecular docking calculations. Promising diterpenes were further characterized by molecular dynamics (MD) simulations based on molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. According to in silico calculations, five cembranoid diterpenes manifested adequate binding affinities as Mpro inhibitors with ΔGbinding < -33.0 kcal/mol. Binding energy and structural analyses of the most potent Sarcophyton inhibitor, bislatumlide A (340), was compared to darunavir, an HIV protease inhibitor that has been recently subjected to clinical-trial as an anti-COVID-19 drug. In silico analysis indicates that 340 has a higher binding affinity against Mpro than darunavir with ΔGbinding values of -43.8 and -34.8 kcal/mol, respectively throughout 100 ns MD simulations. Drug-likeness calculations revealed robust bioavailability and protein-protein interactions were identified for 340; biochemical signaling genes included ACE, MAPK14 and ESR1 as identified based on a STRING database. Pathway enrichment analysis combined with reactome mining revealed that 340 has the capability to re-modulate the p38 MAPK pathway hijacked by SARS-CoV-2 and antagonize injurious effects. These findings justify further in vivo and in vitro testing of 340 as an antiviral agent against SARS-CoV-2.


Subject(s)
Anthozoa/chemistry , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Diterpenes/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/isolation & purification , Diterpenes/chemistry , Diterpenes/isolation & purification , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , SARS-CoV-2/enzymology , SARS-CoV-2/pathogenicity , Structure-Activity Relationship
18.
Front Immunol ; 12: 648250, 2021.
Article in English | MEDLINE | ID: covidwho-1305642

ABSTRACT

BACKGROUND: The newly identified betacoronavirus SARS-CoV-2 is the causative pathogen of the coronavirus disease of 2019 (COVID-19) that killed more than 3.5 million people till now. The cytokine storm induced in severe COVID-19 patients causes hyper-inflammation, is the primary reason for respiratory and multi-organ failure and fatality. This work uses a rational computational strategy to identify the existing drug molecules to target host pathways to reduce the cytokine storm. RESULTS: We used a "host response signature network" consist of 36 genes induced by SARS-CoV-2 infection and associated with cytokine storm. In order to attenuate the cytokine storm, potential drug molecules were searched against "host response signature network". Our study identified that drug molecule andrographolide, naturally present in a medicinal plant Andrographis paniculata, has the potential to bind with crucial proteins to block the TNF-induced NFkB1 signaling pathway responsible for cytokine storm in COVID-19 patients. The molecular docking method showed the binding of andrographolide with TNF and covalent binding with NFkB1 proteins of the TNF signaling pathway. CONCLUSION: We used a rational computational approach to repurpose existing drugs targeting host immunomodulating pathways. Our study suggests that andrographolide could bind with TNF and NFkB1 proteins, block TNF-induced cytokine storm in COVID-19 patients, and warrant further experimental validation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Diterpenes/pharmacology , Drug Development/methods , SARS-CoV-2/physiology , Andrographis/immunology , Cytokine Release Syndrome/drug therapy , Humans , Molecular Docking Simulation , NF-kappa B p50 Subunit/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , COVID-19 Drug Treatment
19.
Eur Rev Med Pharmacol Sci ; 25(7): 3122-3131, 2021 04.
Article in English | MEDLINE | ID: covidwho-1194853

ABSTRACT

OBJECTIVE: Transcriptome data related to severe acute respiratory syndrome-related coronavirus 2 (a novel coronavirus discovered in 2019, SARS-CoV-2) in GEO database were downloaded. Based on the data, influence of SARS-CoV-2 on human cells was analyzed and potential therapeutic compounds against the SARS-CoV-2 were screened. MATERIALS AND METHODS: R package "DESeq2" was used for differential gene analysis on the data of cells infected or non-infected with SARS-CoV-2. The "ClusterProfiler" package was used for GO functional annotation and KEGG pathway enrichment analysis of the differentially expressed genes (DEGs). A protein-protein interaction (PPI) network of the DEGs was constructed through STRING website, and the key subset in the PPI network was identified after visualization by Cytoscape software. Connectivity Map (CMap) database was used to screen known compounds that caused genomic change reverse to that caused by SARS-CoV-2. RESULTS: By intersecting DEGs in two datasets, a total of 145 DEGs were screened out, among which 136 genes were upregulated and 9 genes were downregulated in SARS-CoV-2-infected cells. Functional enrichment analyses revealed that these genes were mainly associated with the pathways involved in viral infection, inflammatory response, and immunity. The CMap research found that there were three compounds with a median_tau_score less than -90, namely triptolide, tivozanib and daunorubicin. CONCLUSIONS: SARS-CoV-2 can cause abnormal changes in a large number of molecules and related signaling pathways in human cells, among which IL-17 and TNF signaling pathways may play a key role in pathogenic process of SARS-CoV-2. Here, three compounds that may be effective for the treatment of SARS-CoV-2 were screened, which would provide new options for improving treatment of patients infected with SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , COVID-19/genetics , Drug Discovery , Gene Expression Profiling , Databases, Genetic , Databases, Pharmaceutical , Daunorubicin , Diterpenes , Down-Regulation , Epoxy Compounds , Gene Ontology , Gene Regulatory Networks , Humans , Molecular Targeted Therapy , Phenanthrenes , Phenylurea Compounds , Protein Interaction Maps , Quinolines , SARS-CoV-2 , Signal Transduction/genetics , Up-Regulation
20.
J Nat Prod ; 84(4): 1261-1270, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1180208

ABSTRACT

The coronaviruses disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has become a major health problem, affecting more than 50 million people with over one million deaths globally. Effective antivirals are still lacking. Here, we optimized a high-content imaging platform and the plaque assay for viral output study using the legitimate model of human lung epithelial cells, Calu-3, to determine the anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component, andrographolide. SARS-CoV-2 at 25TCID50 was able to reach the maximal infectivity of 95% in Calu-3 cells. Postinfection treatment of A. paniculata and andrographolide in SARS-CoV-2-infected Calu-3 cells significantly inhibited the production of infectious virions with an IC50 of 0.036 µg/mL and 0.034 µM, respectively, as determined by the plaque assay. The cytotoxicity profile developed over the cell line representatives of major organs, including liver (HepG2 and imHC), kidney (HK-2), intestine (Caco-2), lung (Calu-3), and brain (SH-SY5Y), showed a CC50 of >100 µg/mL for A. paniculata extract and 13.2-81.5 µM for andrographolide, respectively, corresponding to a selectivity index of over 380. In conclusion, this study provided experimental evidence in favor of A. paniculata and andrographolide for further development as a monotherapy or in combination with other effective drugs against SARS-CoV-2 infection.


Subject(s)
Andrographis , Diterpenes/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Epithelial Cells/virology , Humans , Hydroxychloroquine/pharmacology , Lung/virology
SELECTION OF CITATIONS
SEARCH DETAIL